Program Design and
Analysis

S N A N . - N e

Weeks of coding can save you hours of planning.
—Anonymous

Chapter Goals

e Program development, e Program analysis

including design and testing e Big-O notation

o Object-oriented program design o Loop invariants

o Relationships between classes

,,,; tudents of introductory computer science typlcally see themselves as program-
-~ mers. They no sooner have a new programming project in their heads than
they’re at the computer, typing madly to get some code up and running. (Is this you?)

To succeed as a programmer, however, you have to combine the practical skills of a
software engineer with the analytical mindset of a computer scientist. A software engi-
neer oversees the life cycle of software development: initiation of the project, analysis
of the specification, and design of the program, as well as implementation, testing, and
maintenance of the final product. A computer scientist (among other things!) ana-
lyzes the implementation, correctness, and efficiency of algorithms. All these topics
are tested on the APCS exam.

O e SR ELE £ MR T R R R TR WK

THE SOFTWARE DEVELOPMENT LIFE CYCLE

T T RS AR T, G AT RRA FL R IO 2w I S i e B PRITR L T R

The Waterfall Model

The waterfall model of software development came about in the 1960s in order to
bring structure and efficiency into the process of creating large programs.
Each step in the process flows into the next: The picture resembles a waterfall.

260

The Software Development Life Cycle

Analysis of the
Specification

y
Program Design

¥

Implementation

Y

Testing & Debugging

Y

| Maintenance I

Program Specification

The specification is a written description of the project. Typically it is based on a cus-
tomer’s requirements. The first step in writing a program is to analyze the specifi-
cation, make sure you understand it, and clarify with the customer anything that is
unclear.

Program Design

Even for a small-scale program a good design can save programming time and enhance
the reliability of the final program. The design is a fairly detailed plan for solving the
problem outlined in the specification. It should include all objects that will be used in
the solution, the data structures that will implement them, plus a detailed list of the
tasks to be performed by the program.

A good design provides a fairly detailed overall plan at a glance, without including
the minutiae of Java code.

Program Implementation

Program implementation is the coding phase. Design and implementation are dis-
cussed in more detail on p. 263.

Testing and Debugging
TEST DATA

Not every possible input value can be tested, so a programmer should be diligent in
selecting a representative set of test data. Typical values in each part of a domain of the
program should be selected, as well as endpoint values and out-of-range values. If only
positive input is required, your test data should include a negative value just to check
that your program handles it appropriately.

261

262

Chapter 5 Program Design and Analysis

Example

A program must be written to insert a value into its correct position in this sorted

list:

2 5 9

Test data should include

A value less than 2

A value between 2 and 5
A value between 5 and 9
A value greater than 9
2,5,and 9

A negative value

TYPES OF ERRORS (BUGS)

A compile-time error occurs during compilation of the program. The compiler
is unable to translate the program into bytecode and prints an appropriate error
message. A syntax error is a compile-time error caused by violating the rules of
the programming language. Examples include omitting semicolons or braces,
using undeclared identifiers, using keywords inappropriately, having parame-
ters that don’t match in type and number, and invoking a method for an object
whose class definition doesn’t contain that method.

A run-time error occurs during execution of the program. The Java run-time
environment throws an exception, which means that it stops execution and prints
an error message. Typical causes of run-time errors include attempting to divide
an integer by zero, using an array index that is out of bounds, attempting to
open a file that cannot be found, and so on. An error that causes a program to
run forever (“infinite loop”) can also be regarded as a run-time error. (See also
Errors and Exceptions, p. 132.)

An intent or logic error is one that fails to carry out the specification of the
program. The program compiles and runs but does not do the job. These are
sometimes the hardest types of errors to fix.

ROBUSTNESS

Always assume that any user of your program is not as smart as you are. You must
therefore aim to write a robust program, namely one that

Won'’t give inaccurate answers for some input data.
Won'’t crash if the input data are invalid.

Won'’t allow execution to proceed if invalid data are entered.

Examples of bad input data include out-of-range numbers, characters instead of numer-
ical data, and a response of “maybe” when “yes” or “no” was asked for.

Note that bad input data that invalidates a computation won’t be detected by Java.
Your program should include code that catches the error, allows the error to be fixed,
and allows program execution to resume.

Object-Oriented Program Design 263

Program Maintenance

Program maintenance involves upgrading the code as circumstances change. New fea-
tures may be added. New programmers may come on board. To make their task easier,
the original program must have clear and precise documentation.

T-ORIENTED PROGRAM (DESIGN

iR Pa s i]

OBJEC

Object-oriented programming has been the dominant programming methodology since
the mid 1990s. It uses an approach that blurs the lines of the waterfall model. Anal-
ysis of the problem, development of the design, and pieces of the implementation all
overlap and influence one another.

Here are the steps in object-oriented design:

o Identify classes to be written.

o Identify behaviors (i.e., methods) for each class.

e Determine the relationships between classes.

e Write the interface (public method headers) for each class.

e Implement the methods.

Identifying Classes

. Identify the objects in the program by picking out the nouns in the program speci-
fication. Ignore pronouns and nouns that refer to the user. Select those nouns that
seem suitable as classes, the “big-picture” nouns that describe the major objects in the
application. Some of the other nouns may end up as attributes of the classes.

Identifying Behaviors

Find all verbs in the program description that help lead to the solution of the program-
ming task. These are likely behaviors that will probably become the methods of the
classes.

Encapsulation

Now decide which methods belong in which classes. Recall that the process of bundling
a group of methods and data fields into a class is called encapsulation.

You will also need to decide which data fields each class will need and which data
structures should store them. For example, if an object represents a list of items, con-
sider an array or ArrayList as the data structure.

Determining Relationships Between Classes
INHERITANCE RELATIONSHIPS

Look for classes with common behaviors. This will help identify inberitance relation-
ships. Recall the is-a relationship—if object1 is-a object2, then object2 is a candidate
for a superclass.

264

Chapter 5 Program Design and Analysis

COMPOSITION RELATIONSHIPS

Composition relationships are defined by the has-a relationship. For example, a Nurse
bhas-a Uniform. Typically, if two classes have a composition relationship, one of them
contains an instance variable whose type is the other class.

Note that a wrapper class always implements a has-a relationship with any objects
that it wraps.

UML Diagrams

An excellent way to keep track of the relationships between classes and show the in-
heritance hierarchy in your programs is with a UML (Unified Modeling Language)
diagram. This is a standard graphical scheme used by object-oriented programmers.
Although it is not part of the AP subset, on the AP exam you may be expected to
interpret simple UML diagrams and inheritance hierarchies.

Here is a simplified version of the UML rules:

e Represent classes with rectangles.

e Use angle brackets with the word “abstract” or “interface” to indicate either an
abstract class or interface.

e Show the is-a relationship between classes with an open up-arrow.

e Show the is-a relationship that involves an interface with an open, dotted up-
arrow.

e Show the has-a relationship with a down arrow (indicates composition).

Example

Comparable
<<interface>>

L

1
1 Board

Player
<<abstract>>
l///}7 ‘K\\\ ScoreCard

GoodPlayer BadPlayer

Tutor

From this diagram you can see at a glance that GoodPlayer and BadPlayer are subclasses
of an abstract class Player, and that each Player implements the Comparable interface.
Every Player has a Board and a ScoreCard, while only the BadPlayer has a Tutor.

Object-Oriented Program Design

Implementing Classes
BOTTOM-UP DEVELOPMENT

For each method in a class, list all of the other classes needed to implement that partic-
ular method. These classes are called collaborators. A class that has no collaborators is
independent.

To implement the classes, often an incremental, bottom-up approach is used. This
means that independent classes are fully implemented and tested before being incorpo-
rated into the overall project. These unrelated classes can be implemented by different
programmers. :

Note that a class can be tested using a dummy Tester class that will be discarded
when the methods of the class are working. Constructors, then methods, should be
added, and tested, one at a time. A driver class that contains a main method can be used
to test the program as you go. The purpose of the driver is to test the class fully before
incorporating it as an object in a new class.

When each of the independent classes is working, classes that depend on just one
other class are implemented and tested, and so on. This may lead to a working, bare
bones version of the project. New features and enhancements can be added later.

Design flaws can be corrected at each stage of development. Remember, a design is
never set in stone: It simply guides the implementation.

TOP-DOWN DEVELOPMENT

In a top-down design, the programmer starts with an overview of the program, select-
ing the highest-level controlling object and the tasks needed. During development of
the program, subsidiary classes may be added to simplify existing classes.

Implementing Methods
PROCEDURAL ABSTRACTION

A good programmer avoids chunks of repeated code wherever possible. To this end,
if several methods in a class require the same task, like a search or a swap, you should
use helper methods. The reduce method in the Rational class on p. 172 is an example
of such a method. Also, wherever possible you should enhance the readability of your
code by using helper methods to break long methods into smaller tasks. The use of
helper methods within a class is known as procedural abstraction and is an example of
top-down development within a class. This process of breaking a long method into a
sequence of smaller tasks is sometimes called stepwise refinement.

INFORMATION HIDING

Instance variables and helper methods are generally declared as private, which pre-
vents client classes from accessing them. This strategy is called information hiding.

STuB METHOD

Sometimes it makes more sense in the development of a class to test a calling method
before testing a method it invokes. A stub is a dummy method that stands in for a
method until the actual method has been written and tested. A stub typically has an
output statement to show that it was called in the correct place, or it may return some
reasonable values if necessary.

265

266

Chapter 5 Program Design and Analysis

ALGORITHM

An algorithm is a precise step-by-step procedure that solves a problem or achieves a
goal. Don’t write any code for an algorithm in a method until the steps are completely
clear to you.

Example 1

A program must test the validity of a four-digit code number that a person will enter
to be able to use a photocopy machine. The number is valid if the fourth digit equals
the remainder when the sum of the first three digits is divided by seven.

Classes in the program may include an IDNumber, the four-digit code; Display,
which would handle input and output; and IDMain, the driver for the program. The
data structure used to implement an IDNumber could be an instance variable of type
int, or an instance variable of type String, or four instance variables of type int—one
per digit, and so on.

A top-down design for the program that tests the validity of the number is reflected
in the steps of the main method of IDMain:

Create Display
Read in IDNumber
Check validity

Print message

" Each method in this design is tested before the next method is added to main. If the
display will be handled in a GUI (graphical user interface), stepwise refinement of the
design might look like this:

Create Display
Construct a Display
Create window panels
Set up text fields
Add panels and fields to window

Read in IDNumber
Prompt and Read

Check validity of IDNumber
Check input
Check characters
Check range
Separate into digits
Check validity property

Print message
Write number
State if valid

NOTE

1. The IDNumber class, which contains the four-digit code, is responsible for the
following operations:
Split value into separate objects
Check condition for validity

Object-Oriented Program Design

The Display class, which contains objects to read and display, must also con-
tain an IDNumber object. It is responsible for the following operations:

Set up display)

Read in code number

Display validity message
Creating these two classes with their data fields and operations (methods) is an
example of encapsulation.

. The Display method readCodeNumber needs private helper methods to check

the input: checkCharacters and checkRange. This is an example of procedu-
ral abstraction (use of helper methods) and information hiding (making them
private). ‘

Initially the programmer had just an IDNumber class and a driver class. The
Display class was added as a refinement, when it was realized that handling
the input and message display was separate from checking the validity of the
IDNumber. This is an example of top-down development (adding an auxiliary
class to clarify the code).

. The IDNumber class contains no data fields that are objects. It is therefore an in-

dependent class. The Display class, which contains an IDNumber data member,
has a composition relationship with IDNumber (Display has-a IDNumber).
When testing the final program, the programmer should be sure to include
each of the following as a user-entered code number: a valid four-digit number,
an invalid four-digit number, an n-digit number, where 7 # 4, and a “number”
that contains a nondigit character. A robust program should be able to deal
with all these cases.

Example 2

A program must create a teacher’s grade book. The program should maintain a class
list of students for any number of classes in the teacher’s schedule. A menu should be
provided that allows the teacher to

o Create a new class of students.

e Enter a set of scores for any class.

e Correct any data that’s been entered.

e Display the record of any student.

e Calculate the final average and grade for all students in a class.

e Print a class list, with or without grades.

e Add a student, delete a student, or transfer a student to another class.

e Save all the data in a file.

IDENTIFYING CLASSES

Use the nouns in the specification as a starting point for identifying classes in the
program. The nouns are: program, teacher, grade book, class list, class, student,
schedule, menu, set of scores, data, record, average, grade, and file.

Eliminate each of the following:

267

Use nouns in the
specification to
identify possible
classes.

268

Use verbs in the
specification to
identify possible
methods.

Chapter 5 Program Design and Analysis

program (Always eliminate “program” when used in this context.)
teacher (Eliminate, because he or she is the user.)
schedule (This will be reflected in the name of the external file for

each class, e.g., apcs_period3.dat.)

data, record (These are synonymous with student name, scores, grades,
etc., and will be covered by these features.)

class (This is synonymous with class list.)

The following seem to be excellent candidates for classes: GradeBook, ClassList,
Student, and FileHandler. Other possibilities are Menu, ScoreList, and a GUI_Display.

RELATIONSHIPS BETWEEN CLASSES

There are no inheritance relationships. There are many composition relationships
between objects, however. The GradeBook has-a Menu, the ClassList has-a Student
(several, in fact!), a Student has-a name, average, grade, list_of_scores, etc. The
programmer must decide whether to code these attributes as classes or data fields.

IDENTIFYING BEHAVIORS

Use the verbs in the specification to identify required operations in the program.
The verbs are: maintain <list>, provide <menu>, allow <user>, create <list>,
enter <scores>, correct <data>, display <record>, calculate <average>, calculate
<grade>, print <list>, add <student>, delete <student>, transfer <student>, and
save <data>.

You must make some design decisions about which class is responsible for which
behavior. For example, will a ClassList display the record of a single Student, or will
a Student display his or her own record? Who will enter scores—the GradeBook, a
ClassList, or a Student? There’s no right or wrong answer. You may start it one way
and re-evaluate later on.

DECISIONS

Here are some preliminary decisions. The GradeBook will provideMenu. The menu
selection will send execution to the relevant object.

The ClassList will maintain an updated list of each class. It will have these public
methods: addStudent, deleteStudent, transferStudent, createNewClass,
printClassList, printScores, and updateList. A good candidate for a helper method

- in this class is search for a given student.

Each Student will have complete personal and grade information. Public methods
will include setName, getName, enterScore, correctData, findAverage, getAverage,
getGrade, and displayRecord.

Saving and retrieving information is crucial to this program. The FileHandler will
take care of openFileForReading, openFileForWriting, closeFiles, loadClass, and
saveClass. The FileHandler class should be written and tested right at the beginning,
using a small dummy class list.

ScoreList and Student are easy classes to implement. When these are working, the.
programmer can go on to ClassList. This is an example of bottom-up development.

Vocabulary Summary

Know these terms for the AP exam:

Program Analysis

Vocabulary

software development
object-oriented program
program specification
program design
program implementation
test data

program maintenance
top-down development
independent class
bottom-up development
driver class

inheritance relationship
composition relationship
inheritance hierarchy
UML diagram

data structure
encapsulation
information hiding
stepwise refinement
procedural abstraction
algorithm

stub method

debugging

robust program
compile-time error
syntax error

run-time error
exception

269

Writing a program
Uses interacting objects
Description of a task
A written plan, an overview of the solution

The code

Input to test the program

Keeping the program working and up to date
Implement main classes first, subsidiary classes later
Doesn’t use other classes of the program in its code
Implement lowest level, independent classes first

Used to test other classes; contains main method

is-a relationship between classes

has-a relationship between classes

Inheritance relationship shown in a tree-like diagram
Graphical representation of relationship between classes
Java construct for storing a data field (e.g., array)
Combining data fields and methods in a class

Using private to restrict access

Breaking methods into smaller methods

Using helper methods

Step-by-step process that solves a problem

Dummy method called by another method being tested
Fixing errors

Screens out bad input

Usually a syntax error; prevents program from compiling
Bad language usage (e.g., missing brace)

Occurs during execution (e.g., int division by 0)
Run-time error thrown by Java method

Program runs but does the wrong thmg

logic error

PROGRAM ANALYSIS

8RS R FRRO RS PO W ST SR AT TR,

Program Correctness

Testing that a program works does not prove that the program is correct. After all, you
can hardly expect to test programs for every conceivable set of input data. Computer
scientists have developed mathematical techniques to prove correctness in certain cases,
but these are beyond the scope of the APCS course. Nevertheless, you are expected
to be able to make assertions about the state of a program at various points during its
execution.

Assertions

An assertion is a precise statement about a program at any given point. The idea is
that if an assertion is proved to be true, then the program is working correctly at that
point.

An informal step on the way to writing correct algorithms is to be able to make
three kinds of assertions about your code.

270

Chapter 5 Program Design and Analysis

PRECONDITION

The precondition for any piece of code, whether it is a method, loop, or block, is a
statement of what is true immediately before execution of that code.

POSTCONDITION

The postcondition for a piece of code is a statement of what is true immediately after
execution of that code.

LOOP INVARIANT

A loop invariant applies only to a loop. It is a precise statement, in terms of the loop
variables, of what is true before and after each iteration of the loop. It includes an
assertion about the range of the loop variable. Informally, it describes how much of
the loop’s task has been completed at each stage.

variables initialized

k
_ The asterisks show the points at which the
v loop invariant must be true:
loop bod e e qe .
p body o After initialization
i o After each iteration
* o After the final exit

N
N

Example

// method to generate n! //
//Precondition: n >= 0.
//Postcondition: n! has been returned.
public static int factorial(int n)

{
int product = 1;
int i = 0;
while (i < n)
{
i++;
product *= i;
}
return product;
}
After initialization i = 0, product = 1,i.e., 0!
After first pass i =1, product = 1,1.e.,1!
Aftersecondpass i = 2, product = 2,1ie., 2!
After kth pass i =k, product = k!

The loop invariant for the while loop is

Program Analysis

product = i!, 0 < i <n

Here is an alternative method body for this method. (Assume the same method header,
comment, and pre- and postconditions.)

{
int product = 1;
for (int i = 1; i <= n; i++)
product *= i;
return product;
}

The loop invariant for the for loop is
product = (i-1)!, 1 < i < n#l

Here (i-1)! (rather than i!) is correct because i is incremented at the end of each
iteration of the loop. Also, n+1 is needed in the second part of the loop invariant
because i has a value of n+1 after the final exit from the loop. Remember, the invariant
must also be true after the final exit.

Efficiency
An efficient algorithm is one that is economical in the use of

e CPU time. This refers to the number of machine operations required to carry
out the algorithm (arithmetic operations, comparisons, data movements, etc.).

e Memory. This refers to the number and complexity of the variables used.

Some factors that affect run-time efficiency include unnecessary tests, excessive move-
ment of data elements, and redundant computations, especially in loops.

Always aim for early detection of output conditions: Your sorting algorithm should
halt when the list is sorted; your search should stop if the key element has been found.

In discussing efficiency of an algorithm, we refer to the best case, worst case, and
average case. The best case is a configuration of the data that causes the algorithm to
run in the least possible amount of time. The worst case is a configuration that leads to
the greatest possible run time. Typical configurations (i.e., not specially chosen data)
give the average case. It is possible that best, worst, and average cases don’t differ much
in their run times.

For example, suppose that a list of distinct random numbers must be searched for a
given key value. The algorithm used is a sequential search starting at the beginning of
the list. In the best case, the key will be found in the first position examined. In the
worst case, it will be in the last position or not in the list at all. On average, the key
will be somewhere in the middle of the list.

Big-O Notation

Big-O notation provides a quantitative way of describing the run time or space effi-
ciency of an algorithm. This method is independent of both the programming lan-
guage and the computer used.

Let 7 be the number of elements to be processed. For a given algorithm, express
the number of comparisons, exchanges, data movements, and primitive operations as
a function of 7, T(n). (Primitive operations involve simple built-in types and take one
unit of time, for example, adding two ints, multiplying two doubles, assigning an int,

271

AB (continued)

AB ONLY

272

AB (continued)

Use average-case
behavior to
determine the
big-O run time of
an algorithm.

Chapter 5 Program Design and Analysis

and performing simple tests.) The type of function that you get for T(n) determines
the “order” of the algorithm. For example, if T(n) is a linear function of 7, we say the
algorithm is O(n) (“order n”). The idea is that for large values of 7, the run time will
be proportional to 7. Here is a list of the most common cases.

7 Fun‘ct}t;r: ~1Ty—p_e-forT(n) Big-d bescri;;t_kﬁnr

constant o(1)
logarithmic O(logn)
linear O(n)
quadratic O(n?)
cubic O(n%)
exponential o(2")

Example 1

An algorithm that searches an unordered list of 7 elements for the largest value
could need 7 comparisons and 7 reassignments to a variable max. Thus, T(n) = 2n,
which is linear, so the search algorithm is O(n).

Example 2

An algorithm that prints out the last five elements of a long list stored as an array
takes the same amount of time irrespective of the length of the list. Thus, T(n) =5, a
constant, and the algorithm is O(1).

Example 3

Algorithm 1 executes with T(n) = 3n% — 52 + 10 and Algorithm 2 has T(n) =
%nz — 5072 + 100. Both of these are quadratic, and the algorithms are therefore O(n2).
Constants, low-order terms, and coefficients of the highest order term are ignored in
assessing big-O run times.

NOTE

1. Big-O notation is only meaningful for large n. When # is large, there is some
value 7 above which an O(n?) algorithm will always take longer than an O(#)
algorithm, or an O(r) algorithm will take longer than an O(log) algorithm,
and so on.

2. The following table shows approximately how many computer operations could
be expected given 7 and the big-O description of the algorithm. For example,
an O(n?) algorithm performed on 100 elements would require on the order
of 1002 = 10* computer operations, whereas an O(log, 7) algorithm would
require approximately seven operations.

n O(log,n) O(m) O() O(2")

16 4 16 256 216
100 7 100 10* 2100

1000 10 1000 106 21000

3. Notice that one can solve only very small problems with an algorithm that has
exponential behavior. At the other extreme, a logarithmic algorithm is very
efficient.

Program Analysis

XY Do TR s R A ORI i T MRS

There’s a lot of vocabulary that you are expected to know in this chapter. Learn the
words!

Never make assumptions about a program specification, and always write a design
before starting to write code. Even if you don’t do this for your own programs, these
are the answers you will be expected to give on the AP exam. You are certain to get
questions about program design. Know the procedures and terminology involved in
developing an object-oriented program.

Be sure you understand what is meant by best case, worst case, and average case for
an algorithm. There will be many questions about efficiency on the AP exam. Level
AB students must know the big-O run time for all standard algorithms.

By now you should know what a precondition and postcondition are. Level AB
students only, practice some loop invariants.

273

